

Taming Heterogeneity by Segregation

The DEEP view on Exascale

Norbert Eicker

Jülich Supercomputing Centre & University of Wuppertal

The research leading to these results has received funding from the European Community's Seventh Framework Programme (*FP7/2007-2013*) under *Grant Agreements* n° 287530 and n° 610476

Outline

Motivation

- Why heterogeneous systems
- How to organize heterogeneity

DEEP

- General concept
- Hardware architecture
- Programming paradigm
- Software stack
- (Few) Results
- Outlook on DEEP-ER
- Summary

DEEP face-to-face Leuven

DEEP-ER kickoff Jülich

Partners

DEEP Project

- 16 Partners
 - 4 PRACE hosts
 - 3 Research Centers
 - 5 Industry Partners
 - 4 Universities
 - Coordinator JSC
- 8 Countries
- Duration: 3.5 years
- Budget: 18.3 M€
- EU funding: 8.03 M€

Heterogeneity

Why hetereogeneity – Moore's law

Observation

- Clock stagnates since 2002
- Max. clock frequency at about 3 GHz
 - Few exceptions: Power6, Power 7 Gaming
- # transistors still increases

Current trends

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

- Multi-Core/Many-Core processors
- Simultaneous Multi Threading (SMT)

Heterogeneous Clusters

Flat IB-topology
Simple management of resources

Static assignment of CPUs to GPUs
Accelerators not capable to act autonomously

Alternative Integration

- Go for more capable accelerators (e.g. MIC)
- Attach all nodes to a low-latency fabric
- All nodes might act autonomously

- Dynamical assignment of cluster-nodes and accelerators
 - IB can be assumed as fast as PCIe besides latency
- Ability to off-load more complex (including parallel) kernels
 - communication between CPU and Accelerator less frequently
 - larger messages i.e. less sensitive to latency

Hardware Architecture

DEEP Hardware

DEEP Hardware

DEEP Hardware

CLUSTER

Hardware Architecture

Cyl – Climate Simulation

Guiding Applications

- Brain simulation (EPFL)
- Space weather simulation (KULeuven)
- Climate simulation (CYI)
- Computational fluid engineering (CERFACS)
- High T_c superconductivity (CINECA)
- Seismic imaging (CGG)
- Human exposure to electromagnetic fields (INRIA)
- Geoscience (BADW-LRZ)
- Radio astronomy (Astron)
- Oil exploration (BSC)
- Lattice QCD (UREG)

Programming Paradigm

Software Architecture

tasks, dependencies, heterogeneity

```
void Cholesky( float *A[NT] ) {
int i, j, k;
for (k=0; k<NT; k++) {
   spotrf (A[k][k]);
   for (i=k+1; i< NT; i++)
      strsm (A[k][k], A[k][i]);
   for (i=k+1; i<NT; i++) {
      for (j=k+1; j< i; j++)
         sgemm(A[k][i], A[k][j], A[j][i]);
      ssyrk (A[k][i], A[i][i]);
```



```
#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)
void strsm (float *T, float *B);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);
```

Decouple how we write (think sequential) from how it is executed

Software Architecture

Application Startup

- Application's main()-part runs on Cluster-nodes (CN) only
- Actual spawn done via global MPI
- OmpSs acts as an abstraction layer

- Spawn is a collective operation of Cluster-processes
- Highly scalable code-parts (HSCP) utilize multiple Booster-nodes (BN)

MPI Process Creation

- The inter-communicator contains all parents on the one side and all children on the other side.
 - Returned by MPI_Comm_spawn for the parents
 - Returned by MPI_Get_parent by the children

Rank numbers are the same as in the the corresponding intra-

communicator.

Programming

ParaStation MPI

ParaStation pscom

- Unified comm layer
- pscom plugins
 - Modular
 - Flexible to extend
 - Verbs plugin
 - VELO/RMA plugin

Easy enabling of Cluster-Booster protocol

Software Architecture

OmpSs Offload Abstraction

Source Code

Compiler

Application Binaries

DEEP Runtime

Software Architecture

Relevant features for DEEP

- Low latency, high bandwidth
- RMA engine for remote memory access, bulk data transfer
- VELO communication engine (zero-copy MPI)
- SMFU engine for bridging to InfiniBand
- 6 links for 3D torus topology
- 7th link for general devices
- Built-in PCle root-port
- RAS features: CRC/ECC protection, link level retransmission
- Many status & control registers
- Access from host, via I2C bus or over EXTOLL

Cluster-Booster Communication

- High-bandwidth, low latency communication between Cluster Nodes and Booster Nodes needed
- Booster Interfaces bridge between InfiniBand and EXTOLL
- A Booster Interface can act in two different modes:
 - Bridge: receive packets, actively forward to end-point
 - Set-up and enable RDMA via SMFU directly between memory locations on CN and BN

CN-to-BN-Write Operation

The RDMA write operation initiated on the Cluster Node is "forwarded" via PCIe and EXTOLL to the Booster Node

CBP address mapping

BN-to-CN Write Operation

- The initiating Booster Node asks the Booster Interface's HCA to do an RDMA write operation to the Cluster Node's Memory
- The resulting PCIe read operation is "forwarded" by Extoll

CBP Ping-Pong

CBP

CBP Integration

(Few) Results

iPIC3D

iPIC3D

DEEP-ER Project

- 14 Partners
 - 4 PRACE hosts
 - 4 Research Centers
 - 4 Industry Partners
 - 4 Universities
 - Coordinator JSC
- 7 Countries
- Duration: 3 years
- Budget: 10.0 M€
- EU funding: 6.4 M€

Take aways

- DEEP and DEEP-ER explore new ways to use and manage heterogeneity
 - Cluster Booster Architecture and it's implementation
 - Programming Model
- DEEP's 384-KNC Booster is up and running mostly
- As second 32-KNC Booster utilizing immersion-cooling is on the way
- Both are application driven co-design is important
- Try to hide the details via OmpSs' abstraction layer
- DEEP-ER extends the concept to I/O, Resiliency and innovative memory technologies like NVMe and NAM
- Jülich plans to extend its new Cluster JURECA by a 10 PF/s Booster in 2016 (based on KNL)
- More info: http://www.deep-project.eu http://www.deep-er.eu